
 

 

 

An Arduino-based DCC Accessory Decoder 

for Model Railroad Turnouts 

 

 

Eric Thorstenson 

11/1/17 



Introduction 

Earlier this year, I decided to develop an Arduino-based DCC accessory decoder for model railroad 
turnouts. I wanted the completed decoder/turnout assembly to satisfy a few key design objectives: 

• The turnout must be easily installed on the layout with no external wiring. 

• The controller must be small enough to be installed 'above board' on the turnouts. 

• It should be software upgradeable and programmable in place. 

In addition, I wanted the design to support several variants – a basic design for the majority of turnouts, 
a version with relays for longer turnouts, and a version for crossover control. 

What I ended up with turned out to be a fun but substantial project… 

Design Overview 

The project involved the development of the electrical and software elements of the decoder itself, as 
well as its mechanical and electrical interface to the turnout. The completed assembly includes a custom 
built printed circuit board providing the electrical interface for the Arduino, a 3D printed enclosure, and 
the mechanical linkages to drive the turnout. The assembled turnout with the decoder on it is both 
powered and controlled by the DCC signal from the track, and requires no additional wiring. 

The completed design has the following features: 

• Powered and controlled by DCC directly from the track, with no additional wiring - completely 
plug and play 

• Operation configurable via CVs 

• Software upgradeable in place 

• Controllable via accessory commands for normal turnout operation 

• Controllable via signal aspect commands for external outputs and optional functions 

• Non-derail sensors (contact or optical) automatically throw the turnout for trains approaching 
from the wrong direction 

• Two solid state relays for powering or grounding switch rails as needed 

• RGB LED for status indication 

• Manual control via pushbutton on enclosure 

• 1.5A switching power supply powers the board, servos, and externally accessible 5V output 

• Two external controllable outputs for lighting or other accessories 

• Supports up to four servos for complete crossover control 

• Servos are powered off when not in use 

• Two servo speeds, slow for normal operation and fast for non-derail 

Figure 1 shows a block diagram of the overall system. 



 

Figure 1 System Block Diagram 

 

The electronics are contained in a 3D printed enclosure that mounts to the straight side of the turnout. 
The enclosure also houses the servo, which is connected to the points via a linkage and bellcrank 
mechanism. Power and the contact sensors are connected via wires soldered to the underside of the 
turnout rails. A pushbutton on the backside of the printed circuit board provides manual control of the 
turnout. 

A standard hobby servo is used to throw the points. Position and speed settings are configurable using 
CVs. By default, it uses a 2.5 second motion for normal operation, and a 0.25 second motion when 
triggered by an occupancy sensor. The servo is powered off after the motion is completed, so it does not 
make noise or consume power when not in use. 

The occupancy sensors for the non-derail feature can be configured either as contact closure sensors 
(operating in a manner similar to the traditional Lionel non-derail feature) or as optical infrared sensors, 
or both. The RGB LED provides position indication, as well as feedback for motion and programming. The 
solid state relays can be configured to provide power or ground to switch rails as needed for improved 
power delivery to engines over long switches. 



The microprocessor controlling the whole unit is an Arduino Mini Pro running at 5V and 16MHz. It 
handles the receipt and decoding of the DCC commands, monitors sensors, and controls the various 
outputs. Power and the DCC signal are obtained from the rails of the switch. 

Mechanical Design 

The mechanical design consists primarily of the servo and actuator mechanism, and the electronics 
enclosure. Due to the nature of my layouts (large, ‘temporary’, above board), the mechanism and 
enclosure must both be small and low profile. Figure 2 shows the CAD model of the controller and 
mechanism installed on a Ross O72 turnout. Figure 14 shows a photo of the completed assembly. 

 

Figure 2 Turnout and Controller 

Mechanism 

Actuation for driving the points comes from a standard hobby servo controlled by the Arduino. A 
linkage, bellcrank, and ball and socket assembly transfers the servo’s rotational motion to a linear 
motion applied laterally across the turnout. The servo endpoints are adjustable via CVs to allow 
positioning of the points. A dog-leg in the linkage provides compliance during normal operation, 
allowing the point preload to be maintained consistently. It also prevents damage to the turnout in case 
of servo malfunction, or in case a train is run through the wrong way while the controller is unpowered. 

With the exception of the servo horn, the entire mechanism fits below the envelope of the top rail. The 
servo horn protrudes slightly above that, but remains outside the NMRA clearance template. 

Figure 3 shows the model of the mechanism in the straight and curved positions. Figure 15 shows a 
close-up photo of the completed mechanism. 



 

Figure 3 Mechanism, Straight and Curved Positions 

Enclosure 

The enclosure houses the PCB and forms the mounting interface for the servo. It also provides features 
for the button, LED, and pin header access. The enclosure is 3D printed from sintered nylon, providing 
the flexibility for the button to operate the tactile switch on the PCB. The enclosure is designed to be 
bonded to the ties of the turnout. The servo and PCB are then mounted to the enclosure using screws. 
Left and right hand versions of the enclosures are required corresponding to the left and right hand 
turnouts. The entire enclosure assembly fits below the envelope of the top rail. 

Figure 4 shows views of the top and bottom of the standard enclosure, used for most turnouts. Figure 5 
shows the enclosure for long switches and the enclosure for the crossover controller. Figure 16 shows a 
photo of the standard enclosure. Figure 17 shows the underside of the enclosure with the controller 
installed. 

 

Figure 4 Standard Enclosure, Top and Bottom Views 



 

Figure 5 Long Enclosure and Crossover Enclosure 

Electrical Design 

The electrical design consists mainly of the power section, the DCC interface, the servo control, non-
derail sensors, and the relays. 

Power 

Power for the decoder is provided by a switching regulator module powered by rectified track DCC 
voltage. The power module provides 5VDC at up to 1.5A to the Arduino, sensors, and optional external 
accessories. A common mode noise filter reduces noise from the power booster or operating engines. A 
10uF capacitor smooths the output of the rectifier for input to the regulator. 

DCC Interface 

The DCC signal is provided to the Arduino using a high speed active output optocoupler. Track DCC 
current in the forward LED direction is detected by the opto, and causes the output to go low. Current in 
the reverse direction travels through the bypass diode and causes the output to go high. The opto uses a 
totem pole output, providing a sharply defined square wave that is fed directly to the input pins on the 
Arduino. Pins for both the hardware interrupt and the input capture register receive this signal, so the 
software can be configured to use either. 



 

Figure 6 DCC Power and Signal 

Servo Control 

Although the Arduino PWM output can control the servo without any additional circuitry, I also wanted 
to power off the servo when it wasn’t in use, to improve efficiency and eliminate noise. To do this, I used 
a high side power switch controlled by a separate output from the Arduino. Servo power is enabled after 
starting the PWM signal for the servo, and is disabled shortly after the servo motion is completed. The 
power switch is current-limited to protect the controller against excessive current draw. 

In the crossover controller, all four servos are powered from a common power switch. 

Non-Derail/Occupancy Sensors 

A key feature that I wanted in the design was automatic non-derailing, so that trains approaching from 
the ‘wrong’ side of the turnout will trigger the controller to throw the turnout for them. I also wanted to 
detect occupancy so that the turnout cannot be thrown against a train sitting on it. 

The design supports two ways of doing this. The first uses a contact closure approach, much like the old 
Lionel turnouts. An AC optocoupler detects when a ‘positive’ sense rail is ‘grounded’ by an axle 
contacting the sense rail and the outside turnout rail. Output from the opto provides an indication to 
the controller that that leg of the turnout is occupied. 

An optional approach uses IR detectors with logic level outputs placed between the ties of each leg of 
the turnout. The output from these sensors is in parallel with the output from the optocouplers, and 
goes to the same inputs on the Arduino. 

The controller can be installed on the turnout with either the contact closure sensors or the IR sensors. I 
use the contact closures on most switches because it is cheaper and easier to install that way. I use the 
IR sensors on longer turnouts (for example, Ross #6s) where I want all the ground rails to carry current. 
In either case, the controller logic is the same. The controller will set the turnout to accommodate an 
approaching train detected by a sensor. The controller will also ignore DCC or button commands that 
would cause the turnout to be thrown against an occupied leg of the turnout. 

 



 

Figure 7 Non-derail Sensors 

Relay Control 

A variant of the controller design supports multiple relay outputs for powering or grounding track 
segments in response to changes in the turnout position. Outputs from the Arduino drive high current 
solid-state relays through current limiting resistors. The outputs of the relays are configured so that they 
can be used to power or ground rails, depending on the installation. For example, in the case of the long 
Ross turnouts, the relays are used to ground the straight and curved leads of the turnout. The relays are 
disabled before any servo motion begins, and are enabled at the conclusion of the servo motion. 

PCB Layout 

The basic controller PCB is a 0.9” x 2.5” two layer design. All the surface mount components except for 
the button and the RGB LED are on the top side of the board, so that it can be assembled in a single 
reflow operation. The button, LED, power module, and the Arduino itself are installed separately. A six 
pin header is installed on the Arduino for programming and for power and accessory operation once the 
turnout is installed. 

The PCB for the long turnout version accommodates two relays, and measures 0.9” x 3.0”. The PCB for 
the crossover controller has four relays and is 1.5” x 2.4”. 

Figure 18 and Figure 19 show photos of the completed PCB. 

Software Design 

The software design consists of three main components – the DCC decoding, the hardware 
input/output, and the overall management of the turnout. The following sections provide an overview 
of each of the classes and describe their interaction. Detailed descriptions and example usages are 
provided in the header comments for each class. 

The completed software required development of twelve new class libraries and approximately 3500 
lines of code. 



DCC Decoding 

The DCC decoding functionality is broken into three classes, each with a specific function. The BitStream 
class handles the capture of the raw DCC bitstream. It captures the raw pulse transitions in a queue, 
performs low level error checking to identify valid bits, and assembles and provides the captured 
bitstream via a callback. The Arduino input capture register is used in order to get the most accurate 
timing of the pulses, and to eliminate the influence of other ISRs that may be running. Bitstream capture 
using a hardware interrupt is also supported. Appendix A summarizes tests done comparing the various 
timer and interrupt options for the bitstream capture. 

The DCCpacket class takes the raw bitstream and assembles it into valid DCC packets. It optionally 
enforces the DCC checksum, and can filter repeated DCC packets so that upstream classes can treat the 
packet delivery as reliable. Completed packets are provided to the DCCdecoder class via callback. 

The DCCdecoder class takes a complete DCC packet and processes it, determining the packet type, 
parsing out the DCC address, and extracting the packet data. Callbacks for the various packet types 
provide the data to upstream classes. 

The only part of the DCC decoding process that happens in an ISR is adding the pulse timer count to the 
queue – all other bitstream processing and packet decoding takes place as a normal process outside the 
ISR, significantly easing the constraints on processing time for the packet building, decoding, and other 
functions. The packet building and decoding may in fact be interrupted by the bitstream ISR if they run 
long, without the risk of missing a bit or degrading the packet processing. 

The bitstream class is the only class that requires an actual DCC signal and an Arduino to unit test. The 
DCCpacket and DCCdecoder classes can be unit tested in any C environment, simplifying the use of test 
cases to verify performance. 

Hardware Input/Output 

Apart from the DCC input discussed above, the primary hardware I/O required for operation of the 
decoder includes a button input, an RGB LED output, one or more servo outputs, and occupancy sensor 
inputs. Relay outputs are provided for powering or grounding rails on the turnout where needed. In 
addition, two external auxiliary outputs are provided for low current loads such as LED lighting. 

The Button class provides a basic debounced button input. It is used for the button on the enclosure, as 
well as for the occupancy sensor inputs, which may be either optical or contact closure inputs. 

The OutputPin class is a simple wrapper around the digitalWrite functions for an output pin. It is used 
for the relays and two auxiliary outputs. 

The RGB LED class facilitates control of the three output pins for the LED, as well as providing ON, OFF, 
and FLASH functionality. 

The TurnoutServo class manages the control of the servo that drives the points of the turnout. It allows 
setting of the servo endpoints as well as high and low rate speeds. The servo motion is controlled based 
on the endpoints and the desired speeds. A callback provides notification of completed motion. Multiple 
servos may be controlled by the turnout manager for use on a crossover/turnout assembly. 

Turnout Management 

The overall management of the turnout is handled by the TurnoutMgr class. It provides the top level 
logic for acting on received DCC commands, responding to the occupancy sensors and button inputs, 
and controlling the servo, relays, and LED. It maintains the configuration of the turnout via CVs stored to 



EEPROM, allows changes via DCC program on main commands, and provides a reset-to-default option. It 
handles updating any objects that require time-based updates (servo, button, LED), and provides error 
handling and indication in the case of repeated DCC bitstream or packet errors. Two auxiliary outputs as 
well as temporary configuration settings are controllable using extended accessory (signal aspect) 
commands. 

The servo power pin is turned on and off as needed, so that the servo is only powered when it is actually 
in use. The PWM signal is started before the power is enabled and stopped after the power is disabled, 
so that the servo always has a valid signal while it is powered. In the case of the crossover manager, the 
servo motions happen sequentially, followed by turning off the servo power pin. 

A derived class provides management for a crossover, controlling four servos and four relays. 



Appendix A: Effect of Timer Configuration on Bitstream Capture 

To keep the ISR code used in the bitstream capture as simple and quick as possible, I implemented a 
simple queue, whereby the ISR just puts a timestamp in the queue, and then non-ISR code can deal with 
decoding it. This makes it easy to change how I obtain the timestamp, as well as allowing considerably 
more flexibility in the code that interprets the timestamps. 

As part of the development of the bitstream capture libraries, I examined the effect of different timer 
and interrupt configurations on the accuracy of the recorded timings. To assess the accuracy of the 
various options, I captured 250 samples for each method and plotted the calculated pulse width as a 
function of time (all times in microseconds). The tests were done using a Sparkfun Redboard with the 
ATmega328 running at 16MHz. The red and green lines in each plot indicate the limits for 1 and 0 bits, 
respectively. 

Figure 8 shows the pulse widths calculated using a hardware interrupt and the micros() call to get the 
timestamp. The 4µs resolution of the micros() call is evident. 

 

 

Figure 8 H/W Interrupt and micros() 

Figure 9 shows the pulse widths using a hardware interrupt with the timestamp taken from the timer1 
counter TCNT1. For this case timer1 was configured with a prescaler of 8, which gives 0.5µs resolution, 
with an overflow every 32ms. 



 

Figure 9 H/W Interrupt and Timer1 with 8 Prescaler 

Figure 10 shows the effect on the timestamps of a 10µs noInterrupts block in main(), to simulate the 
servicing of other interrupts. Since the hardware interrupt only gets serviced outside that block, the 
recorded timestamps lose a similar degree of accuracy. This effect is evident in a couple of spots in 
Figure 8 and Figure 9 as well. 

 

 

Figure 10 H/W Interrupt with 10µs noInterrupts Block 



Figure 11 and Figure 12 show the pulse widths based on a timestamp from the input capture register. As 
above, timer1 was configured with a prescaler of 8, which gives 0.5µs resolution. Because the 
timestamp is captured in the register independent of when the ISR gets called, a delay in calling the ISR 
does not affect the accuracy of the timestamp. This is shown in Figure 12, with the same 10µs 
noInterrupts block as in Figure 10. 

 

 

Figure 11 Input Capture Register 

 

Figure 12 Input Capture Register with 10µs noInterrupts Block 



Finally, Figure 13 shows the pulse widths based on a timestamp from the input capture register, with 
timer1 configured with no prescaler. This gives 0.0625µs resolution, with an overflow every 4ms. 
Although the 0.5µs resolution in Figure 11 and Figure 12 stays reliably within the 1 and 0 limits, the 
curve really takes shape here. 

 

 

Figure 13 Input Capture Register with no Prescaler 



Appendix B: Photos 

 

Figure 14 Completed Turnout 

 

Figure 15 Servo and Mechanism 



 

Figure 16 LED, Button, and Pin Header 

 

Figure 17 Underside of Installed Controller 



 

 

Figure 18 PCB Underside 

 

Figure 19 PCB Top Side 


